Introduction
This project demonstrates how to deploy and configure a globally distributed, multi-cloud load balancing and traffic routing setup. The goal is to have our services (running on VMs or containers) in AWS, Azure, and Google Cloud, and route incoming traffic to the nearest or most optimal location using each platform’s global routing features. This approach is essential in the real world to achieve:
Prerequisites
Required Tools & Accounts
AWS Account
Use the Free Tier (no credits required if you stay within usage limits).
Services needed: AWS Global Accelerator (or Route 53) and EC2 (or ECS if using containers).
Owner or Administrator role in your AWS account.
AWS CLI installed locally.
Azure Account
Use the Azure free account (no credits required if you stay within usage limits).
Service needed: Azure Front Door for global load balancing, plus Azure Virtual Machines or Azure Container Instances.
Owner or Contributor role in your Azure subscription.
Azure CLI installed locally.
Google Cloud Account
Use the Google Cloud Free Tier (no credits required if you stay within usage limits).
Services needed: Google Cloud Load Balancing (HTTP(S) Load Balancer or Cloud DNS for traffic routing) and Compute Engine or Cloud Run for the application.
Owner or Editor permissions on your GCP project.
gcloud CLI installed locally.
Enabled APIs: For instance, Compute Engine API and Cloud Load Balancing (usually enabled by default, but confirm in the console).
Important: Stay within the free tiers to avoid charges. Double-check usage limits (e.g., hours of VM usage, data egress, etc.).
Step-by-Step Implementation
We will create a simple “Hello World” service on each cloud platform, then configure global routing so that a single endpoint routes traffic to the nearest or best-performing service instance. We’ll show how to do each step via the Cloud Provider Web Console (GUI) and the CLI.
Note: Every step below indicates both Manual Steps (GUI) and CLI steps together, so you can choose the method you prefer.
AWS Configuration
Step 1: Create an EC2 Instance or ECS Container
Configure AWS CLI with your credentials first:
aws configure
Create a security group to allow HTTP traffic (port 80):
aws ec2 create-security-group --group-name my-web-sg --description "Allow HTTP"
SECURITY_GROUP_ID=$(aws ec2 describe-security-groups --group-names my-web-sg --query "SecurityGroups[0].GroupId" --output text)
aws ec2 authorize-security-group-ingress --group-id $SECURITY_GROUP_ID --protocol tcp --port 80 --cidr 0.0.0.0/0
Launch EC2 instance :
aws ec2 run-instances \
--image-id ami-0c02fb55956c7d316 \
--count 1 \
--instance-type t2.micro \
--key-name <YOUR_KEY_PAIR> \
--security-group-ids $SECURITY_GROUP_ID \
--user-data '#!/bin/bash
yum install -y python3
cd /home/ec2-user
nohup python3 -m http.server 80 > server.log 2>&1 &' \
--tag-specifications 'ResourceType=instance,Tags=[{Key=Name,Value=MyGlobalAppAWS}]'
Step 2: Set Up AWS Global Accelerator or Route 53
Create a Global Accelerator
Create a listener
Add endpoint group for your region
Azure Configuration
Step 1: Create a VM or Container Instance
Manual (Portal) Go to the Azure Portal. Create a Resource Group (e.g., my-global-rg). Select Virtual Machines → Create, choose a free Linux image (e.g., Ubuntu Server free tier). Pick the B1s size (often within free trial limits). Configure inbound port rules to allow HTTP (port 80). Complete the wizard to deploy the VM. Once running, install a simple HTTP server (e.g., sudo apt-get update && sudo apt-get install -y python3 && nohup python3 -m http.server 80 &).
CLI :
Login :
az login
Create resource group :
az group create --name my-global-rg --location eastus
Create VM (with open port 80) :
az vm create \
--resource-group my-global-rg \
--name MyGlobalAppAzure \
--image UbuntuLTS \
--size Standard_B1s \
--admin-username azureuser \
--generate-ssh-keys
Open port 80 :
az vm open-port --port 80 --resource-group my-global-rg --name MyGlobalAppAzure
SSH into VM and start simple HTTP server
Example:
az ssh vm --resource-group my-global-rg --name MyGlobalAppAzure
sudo apt-get update && sudo apt-get install -y python3
nohup python3 -m http.server 80 &
Step 2: Configure Azure Front Door
Create a Front Door profile :
az afd profile create \
--resource-group my-global-rg \
--name MyGlobalFrontDoor \
--sku Standard_AzureFrontDoor
Create an endpoint and attach your VM’s IP as a backend :
az afd endpoint create \
--resource-group my-global-rg \
--profile-name MyGlobalFrontDoor \
--endpoint-name my-global-endpoint
Add a backend to the endpoint (you need the public IP of your VM):
az afd backend create \
--resource-group my-global-rg \
--profile-name MyGlobalFrontDoor \
--endpoint-name my-global-endpoint \
--backend-name my-azure-backend \
--address <PUBLIC_IP_OF_VM> \
--host-header <PUBLIC_IP_OF_VM>
Configure routing rules:
az afd route create ...
(Configure further for latency-based routing, custom domains, etc.)
Google Cloud Configuration
Step 1: Create a VM (Compute Engine) or a Cloud Run Service
Step 2: Configure Global Load Balancing (HTTP(S) Load Balancer or Cloud DNS)
Create a global forwarding rule, target HTTP proxy, and URL map
gcloud compute url-maps create my-global-url-map \
--default-service=my-backend-service
gcloud compute target-http-proxies create my-global-proxy \
--url-map=my-global-url-map
gcloud compute forwarding-rules create my-global-forwarding-rule \
--global \
--target-http-proxy=my-global-proxy \
--ports=80
(You would also need to create a backend service and health check referencing your instance or Cloud Run service.)
Verifying and Testing the Project
Obtain the Global Endpoint AWS Global Accelerator or the Route 53 domain. Azure Front Door URL. GCP Load Balancer public IP or custom domain (if configured).
Access the Service Open a web browser and enter the global endpoint (e.g., https://<FrontDoorDomain>.azurefd.net/, your AWS Global Accelerator’s DNS name, or your GCP Load Balancer IP). You should see your “Hello World” or test message from the nearest data center.
Latency Test If you’re using latency-based routing, test from different geographic locations (or a VPN) to confirm traffic goes to the closest cloud region.
Check Console Logs Each platform’s logging and monitoring console should show requests hitting the instance or container in the relevant region.
Common Issues and Troubleshooting
Conclusion
We have successfully built a Global Multi-Cloud Load Balancing & Traffic Routing environment across AWS, Azure, and Google Cloud. We deployed simple services (VMs or containers) in each platform, then set up global routing with AWS Global Accelerator (or Route 53), Azure Front Door, and Google Cloud Load Balancing. Throughout this project, we learned:
How to configure and deploy resources consistently across different cloud providers.
The basics of creating global routing policies to achieve low latency and high availability.
Techniques to verify and test end-to-end connectivity, ensuring each cloud instance serves traffic properly.
By exploring these steps, we have gained hands-on knowledge of multi-cloud configurations, free-tier usage, and global load balancing best practices.
Popular Projects
What is Cloud Computing ?
Cloud computing delivers computing resources (servers, storage, databases, networking, and software) over the internet, allowing businesses to scale and pay only for what they use, eliminating the need for physical infrastructure.